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Feynman Rules for Probability Amplitudes 
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Starting with very simple assumptions, Feynman rules for the quantum 
mechanical amplitudes and the associated probabilities are derived. These rules 
emerge as the only consistent rules for manipulating complex amplitudes assigned 
to processes. The probability of a process to which an amplitude x has been 
assigned is determined as p(x) = Ix] ~, 0 < a -< 2. If virtual processes are allowed, 
O / ~ 2 .  

In the Feynman approach to quantum mechanics the basic entities are 
processes or transitions rather than states (Feynman, 1985; Feynman et al., 
1965; Feynman and Hibbs, 1965), A process is an ordered event starting at 
a given initial state, proceeding possibly via intermediate states, and ending 
up at a definite final state. To each possible process one assigns a complex 
number called the probability amplitude for the process. The assigned 
number is assumed to depend only on the given process and to be indepen- 
dent of the past history (Markovian property). 

One of~ the great merits of Feynman's formulation of quantum 
mechanics is the clear separation between kinematics and dynamics. The 
former sets the stage and gives the rules of the game, namely, rules for 
combining amplitudes and for calculating the associated probabilities. The 
latter selects the particular dynamical model for assigning amplitudes (e.g., 
nonrelativistic or relativistic quantum dynamics). The situation is analogous 
to that existing in probability theory. The axioms of  probability determine 
the general laws for combining probabilities. The user then selects a par- 
ticular model for assigning probabilities appropriate for the given problem. 
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That quantum kinematics alone has far-reaching consequences has been 
amply demonstrated, especially by Feynman [see, in particular, Feynman 
(1985) and Feynman et al. (1965)]. One can state the laws of quantum 
kinematics as follows: (1) The amplitude for processes occurring in suc- 
cession is the product of the amplitudes for each part; (2) if a process can 
proceed in more than one way, the amplitude for the process is the sum of 
the amplitudes for the different alternatives, and (3) the probability for a 
process is the absolute value squared of the amplitude for the process. A 
vivid illustration of these laws is supplied by the familiar two-slit experiment 
(Feynman and Hibbs, 1965; Feynman et al., 1965). Electrons emerging from 
a source S arrive at a detector placed behind a vertical screen through two 
horizontal parallel slits cut in the screen. Let x stand for the distance of 
the detector, measured along the vertical, from a point midway between 
the two slits. If (x[ S) denotes the amplitude of the electron to go from S 
to x, then 

and 

iX[ S) ~-- ix[  S)via 1 -~- i x  l S)via 2 

ix[S),,ia~=ixli)iilS), i = 1 , 2  

P,2 = p(ix[ S)) = p, +p2 + (x[ S)*ix[S)2 + ix]S)*ix[S) ,  

Here (x] S)~ is the amplitude to proceed from S to x via slit i and pi = [ix [ S)i[ 2 
is the probability for a process in which slit i alone is open. The interference 
term in the last expression exhibits the peculiarities of quantum behavior, 
which may appear to contradict our basic notions about probabilities 
(Feynman and Hibbs, 1965; Feynman et al., 1965). Yet, it is an established 
empirical fact that nature does obey the laws of quantum kinematics. Is 
there any way to understand the "mach ine r f '  behind these laws? Could 
these laws be derived from simpler, intuitive assumptions? Are the laws 
consistent? How would the laws change if some of the basic assumptions 
were changed? 

In what follows we shall apply a method pioneered by Cox (1946) in 
a different context 3 to derive the laws of  quantum kinematics from very 
simple assumptions. These laws will emerge as the only consistent laws for 
combining amplitudes and for calculating the associated probabilities. Given 
a process with an amplitude x, we shall also establish the rule ~ = x* for 
the amplitude of the inverse process. 

Let A, B, C , . . .  denote states and let iAB[ C) denote the complex 
number associated with the process C ~ B ~ A (Figure la). We shall assume 

SThe landmark paper by Cox (1946) establishes the rules for manipulating probabilities assigned 
to propositions or "events." 

) 
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(a) 

Fig. 1. Processes in series. 

(b) 

z r  
D 

that the amplitude (ABIC) is a function of the two partial amplitudes 
(B IC)=y and (AIB)=x: 

(ABI C) =f (x ,  y) 

Consider the process D-~ C-~ B-~ A (Figure lb). By the associative law 
for combining processes in series, the function f(x, y) must satisfy 

f[x, f(y,  z)] =f[f(x,  y), z] (1) 

Consider now processes in parallel (Figure 2a) and assume 

(AI B) = g(x, y) 

where x and y are the amplitudes assigned to the two branches. Clearly, 
g(x, y) is commutative, 

g(x, y) = g(y, x) (2) 

and by the associative law for combining processes in parallel (Figure 2b), 

g[x, g(y, z)] = g[g(x, y), z] (3) 

Let e denote the amplitude for the impossible process. (We assume that 
the amplitudes for any given process tend to one and the same limit e as 
the process becomes blocked.) Then the amplitude for the process shown 
in Figure 2a, with the lower branch blocked, must satisfy 

g(x, e) = x (4) 

(o) x {b) x 
B ~ A  B ~ A .  

Y Z " 

Fig. 2. Processes in parallel. 
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We now turn to the process displayed in Figure 3. Viewed as two processes 
in series Figure 3a), the amplitude for the process is given by f ig(x,  y), ;t]. 
On the other hand, viewed as a process in parallel (Figure 3b), the amplitude 
is g[f(x, Z), f (  y, Z )]. Equating the two expressions, we obtain the distribu- 
tive law 

f[g(x, y), A] = g[f(x, A),f(y,  A)] (5) 

Equations (1)-(5) spell the properties that the functions f(x, y) and g(x, y) 
must have. It is evident that the choice 

f (x ,y)  =xy, g(x,y)=x+y,  e = 0  (6) 

satisfies all the requirements (1)-(5). What is perhaps less evident is that 
equations (1)-(5) together with the assumption of analyticity in both vari- 
ables x and y single out the solution above as (essentially) the only solution 
to these equations (Tikochinsky, in press). That is, given f(x,  y) and g(x, y) 
analytic in both variables and satisfying equations (1)-(5), there exists (at 
least locally) a one-to-one transformation x '=H(x)  such that both 
equations 

H[f(x, y)] = H(x) . H(y) (7a) 

and 

H[g(x, y)] = H(x) + H(y) (7b) 

are satisfied. Thus, up to a form (but with an invariant content!) the 
amplitudes for processes in series and in parallel must obey the laws of 
quantum kinematics (6). Again, the situation is analogous to that prevailing 
in probability theory (Cox, 1946). One can choose if one likes to work with 
log Pi instead of p~, thereby changing the form of the laws of probability 
without changing their content. Although analyticity is sufficient to establish 
the result (7), it is not clear whether it is necessary. That a strong demand 
must be put on the functions f and g in order to satisfy (7) is shown by 
the following example. Let x = XR+ ix~. Then g(x, y)= x+y, e = 0, and 
f(x, y)= XRYR + ixly~ satisfy equations (1)-(5) but not (7). 

(a) 
X (b) x 

C ~ A  = C ~ r  
Y Y 

Fig. 3. Combined processes. 
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We turn now to determine the ampli tude )7 = ( B I A )  for the process 
A --> B inverse to B --> A (Figure 4a). Assuming a (1-1) cont inuous  correspon-  
dence between the ampli tudes  x and )7, namely,  )7 = s ( x ) ,  x = s ( s ( x ) ) ,  we 
have f rom Figures 1 and 2 

x y  = x y  and x--'+-yy = )7 +)~ (8) 

and hence Y = 1, x -1 = (2) -~, 0 = 0, (---x) = -)7. Thus,  all integers, rationals, 
and,  by  continuity,  all real numbers  x satisfy )7 = x. We therefore have 

x-4--x-~= )7 + x--~ = x + x*  and x--x--~= )Tx--~Z = x x *  (9) 

Solving these equat ions for  the unknowns  )7 and x ---~, we obtain for the 
inverse process 

)7 = x* or  )7 = x (10) 

At this stage the solut ion )7 = x cannot  be ruled out. 
Finally, let us work  out  the connect ion  between ampli tudes and prob- 

abilities. Assuming that  the probabil i ty for the process B--> A is a funct ion 
o f  the ampli tude for  that  process,  p ( A I B )  = h ( x ) ,  we have (Figure la)  

h ( x y )  = h ( x ) h ( y )  (11) 

Hence  h(0) = 0, h(1) = 1, and  h ( x  -~) = h ( x )  -~. Since h ( x )  -~ -> 1, the ampli- 
tudes x must  be confined either to Ixl -< 1 or  to Ixl >- 1. In  order  to include 
the impossible process with ampli tude x = 0 and probabil i ty p = h(0) = 0, 
we choose  the interior and  bounda ry  o f  the unit  circle as the al lowed domain  
for the amplitudes.  On the unit  circle, equat ion (11) gives h ( e  i~ e -~~ = 
h ( e i ~  -~~ = 1. Hence  h ( e  i~ = 1 and h(lxl e '~  = h(Jxl)h(e i~ = h(Jx]). 
Thus,  the probabil i ty for  a process is a funct ion o f  the absolute value o f  
the ampl i tude  for the process satisfying h ( I x l  lyl)  --  h(Ixl)h(lyl). The general 
solut ion o f  the last equation,  subject to h(1) = 1, is 

p ( A J n ) = h ( x ) = l x l  ~, ~ > 0  (12a) 

(a) (b) AI 

xi A2 

VAn 
Fig. 4. Direct, inverse, and virtual processes. 
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In order to find out the range of possible a values, consider the process 
B +  B starting at B, proceeding via all possible alternatives B-~ Ai + B 
(Figure 4b), i = 1, 2 , . . . ,  n. Using equations (6) and (10) with g = x*, we 
obtain the amplitude for this process as (B I B) = ~ x*~xi. Since 

P(BIB) = I(B I B)I" = (Z Ix,12)" ~ 1, ,~ > 0 

we have Y~ [x~12- < 1. Now, by assumption, the set A 1 , . . . ,  A, is a mutually 
exclusive and exhaustive set of  alternatives. Hence, Y~ lxi]2- < 1 = ~ [x~] ~ and 
a satisfies 

0 <  a ~ 2  (12b) 

This is as far as we can go in pinning down the probability associated with 
the amplitude x. [Note that by choosing x ~  [0, 1] and a = 1, classical 
(Markovian) probabili ty calculus is recovered.] In order to achieve further 
progress, we must make additonal assumptions about the nature of  inverse 
processes. We shall assume that these processes proceed backward in time, 
and that combined virtual processes proceeding forward and then backward 
in time are possible processes, obeying the rules (6) and (10). The probability 
for the virtual process B + B starting at B at time t = to, proceeding via all 
possible alternatives B -  A~+ B, and ending up at B at time to+0 is then 
p(B I B)= 1 =Y~ Ix~l '~, (BIB)  being the certain event. But p = 1 is obtained 
only for Ixl = 1. Thus, 

](BI B>I = 1 = E Lx, I ~ = (BIB> = Z Ix, I ~ 

and a = 2. Note that the last relation is precisely the completeness relation 
( B [ B) = ~ ( B [ Ai)( Ai l B }. Incidentally, had we started with the other option 
for the amplitude of the inverse process, namely ~ = x, we would have 
obtained 1 2 oz = 1~ x i ]=  Y. Ix;I - - a  totally unacceptable result. (Consider, for 
example, n = 2 alternatives with x2 = ix1 .) Thus, the second solution ~ = x 
in equation (10) must be discarded. To summarize, the probabili ty of  a 
process with an amplitude x is p(x)= Ix] 2. Note that quantum kinematics 
could be established in the same way over the field of  real numbers alone. 
The necessity of  invoking complex amplitudes arises from quantum 
dynamics. 
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